

Ed meme recap:

Congrats! You finished all the assignments!

Questions on lecture content? Or about cats?

Stress

- 429 H is not an easy class
- Lots of new materials
- Unfamiliar programming environments
- Fast, often relentless pace
- Struggling in this course is normal
- There will be times you won't know the answer of the solution
- This is expected-we want we everyone to succeed, but the only way we can help is if you ask for it
- If you find yourself overly overwhelmed or spending more time on this class than you think you should be, please reach out to Dr. Gheith or the TAs
- We can help out as far as the class goes
- We can provide other resources where we are not able to help

Mental health resource available at UT

Quiz everyone say REVIEW!

Question 1 - Caleb

Total time: 6 hours

Time	0	1	2	3	4	5
Washer 1000	Wash $_{A}$	Wash $_{B}$	Wash $_{C}$	Wash $_{D}$	Wash $_{E}$	
Dryer 1000		Dry $_{A}$	Dry $_{B}$	Dry $_{C}$	Dry $_{D}$	Dry $_{E}$

Question 1 - Chris

Total time: 10 hours

Time	0	1	2	3	4	5	6	7	8	9
Washer Dryer 3000	Wash $_{A}$	Dry $_{A}$	Wash $_{B}$	Dry $_{B}$	Wash $_{C}$	Dry $_{C}$	Wash $_{D}$	Dry $_{D}$	Wash $_{E}$	Dry $_{E}$

Question 1 - Alex

10 hours vs 11 hours

Time	0	1	2	3	4	5	6	7	8	9
Washer Dryer 4000	Wash $_{A}$ Dry $_{A}$	Wash $_{B}$ Dry $_{B}$	Wash $_{C}$ Dry $_{C}$	Wash $_{D}$ Dry $_{D}$	Wash $_{E}$ Dry $_{E}$	Wash $_{F}$ Dry $_{F}$	Wash $_{G}$ Dry $_{G}$	Wash $_{H}$ Dry $_{H}$	Wash $_{I}$ Dry $_{I}$	Wash $_{J}$ Dry $_{J}$

Time	0	1	2	3	4	5	6	7	8	9	10
Washer 1000	Wash $_{A}$	Wash $_{B}$	Wash $_{C}$	Wash $_{D}$	Wash $_{E}$	Wash $_{F}$	Wash $_{G}$	Wash $_{H}$	Wash $_{I}$	Wash $_{J}$	
Dryer 1000		Dry $_{A}$	Dry $_{B}$	Dry $_{C}$	Dry $_{D}$	Dry $_{E}$	Dry $_{F}$	Dry $_{G}$	Dry $_{H}$	Dry $_{I}$	Dry $_{J}$

Question 1 - Willow \mathbb{O} Jocelyn

Total time: 7.5 hours

Time	0	1	2	3	4	5	6	7
Washer 1000	Wash ${ }_{A}^{1}$ Wash	(wait) Wash $_{c}{ }^{1}$	Wash ${ }_{C}{ }^{2}$ (wait)	$\begin{aligned} & \text { Wash }_{E_{2}^{1}} \\ & \text { Wash }_{2} \end{aligned}$	(wait) Wash $_{G}{ }^{1}$	Wash ${ }_{G}{ }^{2}$ (wait)	Wash ${ }_{1}^{1}$ Wash ${ }_{1}{ }^{2}$	
Washer Dryer 4000	Wash $_{B}$ $\mathrm{Dry}_{\mathrm{B}}$	Dry $_{\text {A }}$ Wash $_{\text {D }}$	$\begin{aligned} & \text { Dry }_{D} \\ & \text { Dry }_{C} \end{aligned}$	Wash $_{F}$ Dry $_{F}$	Dry ${ }_{E}$ Wash $_{H}$	$\begin{aligned} & \text { Dry }_{H} \\ & \text { Dry }_{G} \end{aligned}$	Wash Dry	Dry,

Question 2

begin_of_while:
mov \$1, i
begin_of_for:
code for inside of for loop
add \$1, i
cmp i, \$5
jl begin_of_for //i at this point, before jump
jmp begin_of_while

$i=2$	$i=3$	$i=4$	$i=5$	$i=2$	$i=3$	$i=4$	$i=5$	$i=2$
00	01	10	11	10	11	11	11	10

Question 3

Dr. Gheith created the following Verilog module to perform the addition of two different integers. Propose three different inputs (don't just swap a_in and b_in) for a_in and b_in that effectively test the module? Explain why you selected these inputs?
module addition (input [7:0] a_in, input [7:0] b_in, output [7:0] out);

Question 3

Dr. Gheith created the following Verilog module to perform the addition of two different integers. Propose three different inputs (don't just swap a_in and b_in) for a_in and b_in that effectively test the module? Explain why you selected these inputs?
module addition (input [7:0] a_in, input [7:0] b_in, output [7:0] out);

a_in	b_in
11111111	11111111
11111111	00000001
11111111	00000000
00000000	00000000

1: mov \$2, \%rbx
2: add \%rax, \%rbx
3: mov (\%rdx), \%rcx
4: sub \%rcx, \%rbx // rbx = rbx - rcx
5: jmp on_a_trampoline on_a_trampoline:
6: mov \%rax, (\%rdx)
7: mov \%rbx, (\%rdx, \$0x10)
8: mov \%rcx, (\%rdx, \$0x20)
9: jnz \%rsi, the_abyss

0	
1	
2	0,1
3	
4	2,3
5	
6	$0,3(\mathrm{WaR}), 5$ (control dependency)
7	4,5
8	3,5
9	5

Question 4

b. Assume that an instruction is evaluated in a single-cycle. How many cycles will a standard single-cycle processor take to complete this code (i.e. resolve the last jump)?

10
c. Now also assume that all instructions are executed simultaneously when possible. How many cycles will an out-of-order processor take?

4

Final Project

Final Project Info!

- work in groups of up to four people
- presentations will be April 25th and April 26th
- presentation scheduling is up to y'all to organize
- project final submission will be due April 29
- anything architecture related
- extend a project we already did
- something completely new
- project proposal - more info next slide
- p9 will likely ask for similar elements included in the proposal, plus any research or proof of concept
- form groups + ideas now

Project Proposals

- Due April 15 th at $11: 59 \mathrm{pm}$
- Submit by making a public post on Ed Discussion
- Mention if you are looking for additional group members
- Feel free to leave positive comments or questions on others' proposals
- Tag proposals with "Project Proposal" tag
- Title:<team name> - <project name>
- Include team members, description of the project, timeline, and questions you might have

Example

Team Members: Caleb Eden, Chris Hill, AlexHuang, Willow Stenglein, Jocelyn Zhang
Proposed work: Teach the freshmen about cats
Timeline:
4/19: Research cat facts and locate cats
$4 / 26$: Take pictures of cats and start on presentation
4/29: Finish presentation; share with world

Questions:

Are we allowed to bring a cat into discussion?

What we are looking for in presentation

- Be prepared!!
- Have a backup plan if your live demo doesn't work
- Explain your work
- Provide background that is appropriate for CS429H students
- Ideally people will learn something about architecture from your presentation!
- Demonstrate what you did
- Show screenshots of results, live demos, whatever is appropriate for your project

Final Project Ideas !!!

- We have posted a long list of project ideas on Ed
- Note: We have 2 FPGAs (maybe more) so please let us (and probably more importantly Gheith) know early if you'll want one!

Questions?

0000\$\$\$\$\$\$\$\$\$\$\$0000 oos $\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ 0$ oo $\$ 0$
o\$ \$\$ o\$

